Differential Temperature Water-Gas Shift Reactor
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Catalyst Screening
Example: Precious Metal (PMS5) vs Base Metal (T2650) WGS Activity

Kinetic Model Development

Low Shift Feed at 0.5 5/C High Shift Feed, GHSY = 60,000, %/G = 0.5
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Differential Temperature Approach

Concept. The trade-off between reaction kinetics and equilibrium with exothermic reversible reactions implies
an optimal temperature profile where reaction rate Is maximized, resulting in smaller reactors and optimal
catalyst utilization.

Optimal temperature profies are facilitated by integrated heat exchange in microchannel reactors.

Fuel Reforming Water-Gas Shift: Objective is to combine two adiabatic reactors and an intermediate heat
exchanger Into a single microchannel device. Size, welght, and catalyst loading further reduced by

achieving a differential temperature profile. (Based on Sud-Chemie PMS5 catalyst and SR reformate.)
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90% Conversion to 1.4% CO (Dry)

— Uptimal size == 1.3L

— Hest model result for
prototype reactor => 2 &1

— Bestexpresult =>4.7L

LESS THAN 3 LITER WGS FOR 50 kWe-SCALE:

= Basedon:
* Sud-Chemie PMS5 precious metal catalyst

50 KWe scale WGS (L)
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(2 stage only, project
* Kinetic model from single channel isothermal data IBlalIgE2)
* Predicted performance of prototype /-channel
reactor (blue line to the nght) \(
= Best multichannel result supports < 5L . . . - - |
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= Potential for additional improvements GHSY (x10°9)

Integrate into
System

Fuel Processor Integration

m Specific Design
* Feed stream
— HTS wersus LTS

— ATR versus oR
— Inlet temperature

* Efficiency - thermal integration

s Example: 200-1000 We steam
reforming test stand
* Reactant cooled front section
* Air cooled final section

LT Wiiz5 Reactor

Single Channel Test Reactor
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= New important research tool

* Microchannel

* Engineered catalyst

* Temperature controlled

* Easily modeled

* High data production

* Rapid catalyst turn-around

m Used for:

* Kinetic model development

* Parametric studies

* Catalyst optimization

* Lifetime testing

* Benchmark performance

Sud-Chemie PMS5 WGS Catalyst Selected

m Generalized kinetic model:
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= Kinetic model fit using integral FEA model (FEMLAB®)
m Based on screened data (< 95% of equilibrium conversion)
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Data Represents

m Sud-Chemie precious metal catalyst

m HIS (146% C0) and LTS feed (4.5% GO

m Temp- 2250 to 4500

Pressure - 1 to 1.3 atm
Yaried catalyst loadings
GHSY - 235,000 to 8,000,000
SfG-02to 085
Conversions 3% - 95%
Lowest selectiity 987 %

Reactor
Moaeling

Microchannel Reactor Modeling

s FEA Transport Modeling (FEMLAB®)

* Mass transfer with reaction kinetics
* Heat transfer with heat of reaction

* Generic kinetic model

= Multi-fluid for reactor cooling / heating

* Co-current, counter current, and cross current (3D)
= Multichannel reactors (using symmetry planes)

m Capabillities:

* Comparison to actual performance

— Model validation
— Hardware diagnostics

* Reactor design

— To meet functional specifications

— Uptimization — catalyst activity, size, weight, or efficiency

Example: Prototype 7-channel Reactor

= Predict performance
= Validate model

Temperature and Conversion Profiles (FEMLAB®)

* Coolant 225C Arr, Reformate Inlet 350C, 285,000 GHSV (HTS feed)
* 89.7% CO conversion, 230 We power, 2.4L full-scale core volume
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Parametric studies

J350C Reformate Inlet, Z25C Coolant
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Reactor Prototypes
for Validation

Prototype Reactor Testing

Scale-up to multichannels

Validate modeling

Demonstrate concepts — differential temperature
Support performance claims — size and weight

Example: WGS differential temperature

demonstration using prototype 7-channel

reactor

Isothermal to Differential Temperature Comparison

= 150,000 GHSV, 0.5 Steam/Dry Gas, 4.6% CO Feed (LTS Feed)
s Final CO concentration shown

* |sothermal results in blue

* Differential temperature operation

(1 experiment; temperature trajectory estimated)
= Differential temperature better than optimal isothermal or

adiabatic
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